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A PIEZOTHERMOELASTIC SHELL THEORY
APPLIED TO ACTIVE STRUCTURES

H. S. Tzou and R. V. Howard
Department of Mechanical Engineering

University of Kentucky
Lexington, Kentucky

ABSTRACT

"Smart" structures with integrated sensors, actuators. General theories derived from a generic shell continuum
and control electronics are of importance to next-g-neration can be applied to a broad class shell and non-shell structures
high-performance structural systems. Piezoelectric materials (Soedel, 1981). Chau (1986) proposed a variational formulation
possess unique electromechanical properties, the direct and to describe the electromechanical equilibrium of completely
converse effects, which can be used in sensor and actuator anisotropic piezoelectric shells. Rogacheva
applications. In this study, piezothermoelastic characteristics of (1982,1984a,1984b,1986) studied state equations and beundary
piezoelectric shell continua are studied and applications of the conditions of piezoelectrc shells polarized along coordinate
theory to active structures in sensing and control are discussed. directions. Semik and Kudriavtsev (1980) formulated the
A generic piezothermoelastic shell theory for thin piezoelectric equations of motion for piezoelectric shells transversely
sheds is derived usinr the linear piezoelectric theory and
Kirchhoff-Love assumptions. It shows that the dynamic pized eci (1978) droroaed
equations. in three principal directions. include thermal induced thermopiezoelectrc laminae. Tzou and Gadre (1989) proposed a
loads as well as conventional electric and mechanical loads. The generic theory for multi-layered piezoelectric shell actuators
electric membrane forces and moments induced by the converse based on equivalent induced strains. Tzou (1991) derved a
effect can be used to control the thermal and mechanical loads, general distributed sensing and control theory for a generic ,heil
A simplification procedure, based on Lame's parameters and continuum using piezoelectric thin layers. A thin piezoelectricrAdiiofcurvaturesis propoedu, band oapplicos ohetheory td solid finite element with three internal degrees of freedom wasradi of curvatures. is proposed and applications of the theory to formulated and applied to distributed sensing and control 4f
1) a piezoelectric cylindrical shell and 2) a piezoelectric beam continua (Tzou & Tseng, 1991). Tzou and Zhong (1990) denv,:are demonstrated. a piezoelastic vibration theory for a hexagonal symmetrical

piezoelectric thick shell with three effective principal axes: aiid
this theory was applied to distributed shell convolving sensors
(Tzou & Zhong. 1991a) and active structural control (Tzou k

INTRODUCTION Zhong, 1991b) In this study, the piezoelastic shell vibration
theory is extended to include thermal induced effects due to

Development of "smart" structures with integrated temperature variations. Piezothermoelastic behaviors f
sensors, actuators, and control electronics are crucial to piezoelectric shell continua are investigated.
next-generation structural systems. New sensor/actuator
materials are investigated and new technologies are developed in Based on the linear piezoelectric theory and
recent years. Among those commonly used sensor/actuator Kirchhoff-Love assumptions, a generic piezothermoelast•c sheil
materials (e-g., piezoelectric materials. shape-memory alloys, theory for thin piezoelectric shells is derived first. A
electrorheological fluids, electrostnctive materials, simplification procedure, based on Lame's parameters and radii
magnetostrictive materials, etc.), piezoelectric materials possess of curvatures. is proposed and applications of the theory to a
unique electromechanical properties (the direct and converse number of piezoelectrc continua (a piezoelectric cylindrical shell
piezoelectric effects) which can be respectively used in sensor and a piezoelectric beam) are demonstrated. Thermal effects to
and actuator applications (Tzou & Fukuda. 1991: Tzou & .sensing and control are discussed.
Anderson. 1992).

DEFINITIONS

It is assumed that a generic piezoelectric shell continuum
is defined in a curvilinear tri-orthogonal coordinate system in
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which the a, and a? define the neutral surface and a, defines the It is assumed that the piezoelectric shell is thin as
normal. Figure 1. Siuce the she!l I; thin the electric field F1 is compared with the other two in-plane dimensions. The
considered across the shell thickness and the external electric transverse shear deformations and rotary inertias are negligible.
charge Q3 is on the top and bottom surfaces only. In this Thus, the displacement (Ui, 1 = 1,2) of any given point in the
section. assumptions and constitutive equations are defined, shell continuum can be represented as a summatin of the
(Note that this shell is generic, which can be simplified to a co ntidueo contraci ntedpas ion of the
broad class of shell and non-shell geometries Examples are component due to contraction/expansion of the neutral surface
demonstrated in case studies.) and the component due to bending:

Ui(oI,a 2 ,a 3 ) = ui(ok1,o2 ) + ±k3i(aisa2),

i= 1.2.3. (6)

where 3i denotes the bending angle and 33 ) a3 defines tie
distance measured from the neutral surface. Based un* Kirchhoff-Love assumptions, the transverse shear strains S13
and S23 are negligible. i.e.. S 13 = 0 and S 23 = ). Thus. the two

/ -bending angles can be derived as:

~~U 31= -' - ,-'• (7)
u'T 7I i7ai3

Note that the transverse displacement U3 is independent of
thickness, i.e., U3  u3(a4.u2) aaid Lie transver!e strain S33 can
thus be neglected, except where a concentrated load is applied.
The mechanical strains of the thin shell consist of an in-plane

Fig.1I A piezoelectric shell contintum. membrane strain component S9. and an out-of-plane bending

The constitutive equation of piezothermoelasticity is component kij.

defined as

D ei S + -feJ {p}Atp 2 S22 = Sh? + a3k2, (9-b)

where {T} is a stress vector; [c] is the elastic moduli matrix: [e] Si2 = S72 + 3k, 2 . (9-c)

is the piezoelectric constant; = isi{N}: s is the elastic The membrane and bending strains, S9. and k. are defined as
compliance matrix; {j,} is the coefficient of thermal expansion; iI ij
{D} is the electric displacement vector: {S} is the mechanical follows:
strain vector: (f] is the dielectric constant matrx: {E} is the
electric field vector; {p} is the pyroelectric constant: and Atp is S 1? = i , u A + 0-a)
the temperature change. It is assumed that the + - • + i
piezothermoelastic behaviors are instantly balanced in S = 1 1 + u IA 2 + , (10-b)
mechanical, electric, and thermal fields and a quasi-static X dO2  1 1 X-.
approximation can be applied. For a piezoelectric shell with a so A2 L' [112j A aI 0 u-c)
hexagonal symmetrical structure (class C6v 6mm), the elastic +,1i T

2
j " 2 Q 'J

moduli [c] matrix is defined by k =(li-a

[ciici2ci1 0 0 0 k2 2 = .1 -•-I-•-- - (l-b)
C13C13C33 0 o 0) ot2 �a=_i1

)ci1) 0 0 c 4 4 0 0 ' (3) k] t 2(
0 0 0 0 c 44 0 where ds are defined in Eqs.(7) and (8). Note that there is no
0 0 0 0 0 co shear strain on the a, face such that there is no induced electric

field in the a, and the a2 directions. Considering the

where cii = (Y/1-4 2 ), Ci2 = (YA/1-92), c6 6 =--(c 1 1 -- q:) piezothermoelastic c-rnstitutive equations and the stress-strain

- jY/2(I.-.)J I where a is Poisson's ratio and Y is Young's relations of thin shells, one can define the mechanical stress T,,
modulus. (Note that c13, c33 , c4 are neglected for thin
piezoelectric shells with ineffective in-plane shear constants.) induced by the mechanical strains, the electric displacement S
Piezoelectric constant ýe] and dielectric constant itj matrices are
defined by induced by strains. and the stress E. induced by electric fields.

r 0 I) ,) U C) 0)
"re; = s ) C) Ue.5 e~,'i; Tt41S -c 2 S (2a

1j e13e13e33  Ti uiS,, cI1 (2a
"" .) i) 1 Ta 2 = c2SII - cIIS2 , (12-b)
= i,) c, 1 3 T3 =,), (12--c)

= L t) 133 T 12  cA6Sl:. (12-d)
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• (2 where the first term is contributed by the converse effert. 7ne
T 13 T 2• =3 (12--e) second term by the pyroelectric effect (temperature). the tn:ri
St = S2 = I, (13-a) term by the elastic strains via the direct effect The eiect.::c

S 3 = e 31SI + e 31S 22 , (13-b) bending moments are

EI= E2= e31E3  (14-al = 1F eE 3ci3da•3

E3 = e 33E3  (14-b)J(k - h3 e• 12kt-k ) -
E4 = E5 = EG = 0 . (I1--b) - -- - -h-3  .

These terms will be used in conjunctions with the energy NI!2 e = 3
expressions and the variational equations. Q3

S e h 3 
2 k-• a ll•-k2) J •_•

FORCES AND MOMENTS 7 (33

In this section, all forces and moments introduced by M = M13 = NM53 = 0
mechanical. electric, and thermal effects are defined. These
foree and moment components will be used in Harmlton's
equation when deriving the shell piezothermoelastic equations. where Mej is the total electric bending moment on the ith face :n
The mechanical membrane forces are the jth direction due to the converse piezoetectnc effect The

electric transverse shear forces are Q13 = QS3 = 0. There is no
NM Tltdk 3 = K(S1i+ASi2) (15-a) shear forces in the a3 direction due to the electric effects. The

f Q3 
t

N2 = T22da 3 = K(S 2-+X15) , (15-b) thermal membrane forces Nji are defined by

Ak Op3 r

N MI2  = J 3 T i2da 3  '= 1 -K (M( . (15-c) N1 a3 A ia t pd 3  = h.A 21t p ( 20-aNk2 = J A2Atpdo3 = hA•2Atp . (20-hi

m

where K = Yh/(1-g;) is the membrane stiffness and N i, is the
total force acting on the ith face in the jth direction due to The thermal bending moments are
mechanical effects. The mechanicai bending moments are

M = / AiAtpaidas = 0, (21-is

M1 = f Ti 3da = D(kii-¶-k22) , (16-a) a0

a3 W2 = ]AXtpaldQk3 =0 (21-bý

M12 = |T 22( 3da 3 = D(k22+gk1) (16-b) (3
-U3 - k12 (1 It is noted that the piezoelectric continua experience only

M,12 = T12a3da = I . = 2 , (16--c) in-plane thermal expansion/contraction and no bending
a3 moments in a uniformly distributed thermal field.

M013 = NT3 = 0, (16-d)
where D = is the bending stiffness and Mij is the total HAMILTON'S PRINCIPLE AND PIEZOTHERMOELASTIC

D=177707.s2 EQUATIONS
bending moment on the ith face in the jth direction due to the

M In this section, piezothermoelastic equations in three
mechanical effects. The mechanical transverse shear forces Qi3 principal directions will be derived using Hamilton's principle
are and the variational procedures. Hamilton's principle gives

(Tzou & Zhong, 1990)QT3 =" 1rda3 , I 7-a)

Q J a3 23da 3 . (17-b) b '-Jf- :--p-jU j - H(SkijEj)] dVdt

rti

Using Eq.(2), one can derive the electric membrane forces: + j ' t 16U1 - 6p)dSdt = 0'

S= 0 e 3iE3da 3  where H is the electric enthalpy; p is the mass density; U, is the

displacement. E, is the electric field.- i is the surface traction :n
elihQ, _e_!.t hp 3At -_e.. Sh S•2)h (18-a) the aj direction: Ski is the strain on tie kth face and in the jth
(33 f3a ~ 33 I

direction: ; is the surface charge: and o is the electric potential
N52 e31The electric fields in the curvilinear coordinate system are: I i E

= 1 a I EA
k 3  = - AI(l+03/Ri) a, 2) E2 -A -I3-(1/R?) a , and 3) E3

= - -Q - L3 hp3Atp - eLU S(i 'S")h . (18-b) = a where R, and R2 are the radii of curvatures. and A,

and A2 are Lame's parameters. These define the electrc fields

N2 = I). (18-6) as the gradient of the electric potential. The electmc enthalpy is
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define-I as H = IS'~f{ST} - Ejt ýD}] (Tzou & Zhong, 1990). 01 N , ýA af ,MA,
Using the piezothermoelastic constitutive equations, one can -_ . - caN
derive ac 'IMfl 2  Q~ M2 A - 0

H ='{Sj
t[cl{ S) - f{E}'[e]{S} - I{El' t[f j{ oT I'lla2 ,

- f{S}L{AA}tp - f{E)I{p},Itp (23) + ONIT ,a 2i .~ A2  I ~ 73M

Substituting the straini-stress expressions into the electric - (r-b
enthalpy givesM52(2-

H = i(T,,Sjjr1.T:S??+TiS12) - e3!(S11.-S: 2)E3  N -N 2 A (*

- f{t3E3 )- (A ,S!,+A 2S22+A3S3 3-rp3E3)AýtP (24) +or da2 '

+ 1 fof4 1 2A2 1 + 3(MT)i2A 9M)A,
Substituting the electric enthalpy and all other energy R2 ai da2 -M1i)J d 2
expreigions into Hamilton's equation and collecting all like + M - dA 2 1 4- NmA 2 _phA A a2 u 2
terms in the variational equation. one can derive the "doJ ?F- - ~~
piezothermoelastic and vibration equations in three principal 9 (Nj,) A 3A IA I f8(MN2 A1

direcions _7 _N d+ t 0 02

direcions.aAl 
(26-b,

a( 'l 1- __ 1- ph 1  82) A2-a 21 2A,___ +A 0d1ad

+ ,t A2 N~N~ aA ,,,, + a[ M I, 8 )A21 (fl N)a d a2  a2~~ k2C2

+QM13 T[, + Nm12L!, = phA,Ar= (26-a) +(~1  NIT~ * 'o 2 Al (NMI-N) Yý7
Ct2  a a,da2 NJ T2a ~ 2

Q3 + Nmi riad- (Ntm  N~A ,-Ap F - (N~-~)~ ph A - N

(~~a A?1 a~.21382A~
-a + Aa 2 R d2

where h is the thickness of piezoelectric shell. The superscripts (27-b)
m, e, and t respectively denote mechanical, electric, and thermal Note that electric related terms can be used as' control terms to
components. Qm13 and Q13 in Eqs.(25)-{27) are defined by actively change the shell dynamics. In addition, all terms with a

constant either h/Rj or l/R 2 vanish if the radius of curvature is
a[!N*j-M I A2+ arW1,' 2 A I infinite, e.g., flat plates (Tzou, 1991). The charge equation of

Q"?3AIA 2 = ~ 00 G2 electrostatics of the piezoelectric shell is denved:

-(MIrM1 2 ) aA + MM,~~ a , (28) a[(e31Sji+eiS22r-f 3 3E3+P3AtT))AjAiI -0,702' (30)

Q'13AIA2 m. 2 A 71 + af(.i!zII.)Aj which implies that the quantity [e3i(S11+S 2 2 ) + e33Es + p3slt.
002, 8 AIA 2 is equal to a constant and the thickness variation is equal_ m  A2  (29) to zero. Note that this equation can be used to estimate anT -~ a2 da, electric output as functions of induced mechanical strains and

Note that the the equation of motions include the mechanical temperature .variation. i.e.. E3 = - (l/(33)[eii(Sii+S22)+P31t,!.
forces/moments (N!m./M !), electric forces/moments (NI /Nl na pe-crut odto (zu hg 91)

ii ii ij ii
and thermal induced forces (N~i). As discussed previously. BOUNDARY CONDITIONS
thermal expansions/contractions in three principal directions are Budr odtosaedrcl evdfo h
considered. It is observed that the uniform temperature iaBnleuto Apni) h oundary conditions arediety ervdfo th
variation does not contribute any thermal moments, which will variainleuto Apni) h onaycniin r
not be the case in non-uniform temperature variations. These defined by the surface traction forces and the'surface charge.
system equations can be solved, with the appropriate bound arv (Note that other types of boundary forces and moments, such as

condtios ad eteral xciatins ~echnicl, lecric an/or spring supported boundaries, fixed/hinged boundaries, etc.. can
thermal), to describe the exact piezothermoelastic behaviors of alobe accommodated.)
the piezoelectric shell In structural co~ntrol applications, the Mechanical Boundary Conditionselectric related components can be used as co.ntrol forces and
moments to alter system characteristics iTzou &: Zhong. 1991b). Mcaia onay cniin eie yete
Rearranging Eqs.(25-27) and moving all electric rela ted terms fore/momntca ordipacemnt/otaitions arfiedsummarizedei

(conrolters) t th riht (zou 191'. ca deiveTable I in which terms with a superscript * denote external
boundary components.
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Table I. Mechanical boundary conditions. Accordingly, the boundary transverse shear forces Q are

Force B.C. 's Disp B C.
Qk3 = Q31 = - t, 3da 3  5

in e Nt =

j 03

1 kk - kk :k3k = 0

where Q is the shear force cn the ith face in the ,th direction

Q kt Q k t t =t Electric Boundary Condition

The electric boundary condition is defined as
where k = 1.2. the subscript t denotes the tanzential direction
(i.e.. t = 2 if k = I and vice versai. It is .)bserved that the e315 1 - e3 1S22 - f 3 3E3 + p3.. tr - Q3 3)
thermal induced membrane force only occurs :n the principal
direction. The mechanical shear stress resultants are defined as It is observed that the total surface charge including the

mechanical. electric, and temperature effects is equal to the

" ":3 = Q .- and external surface charge Q3.

Note that the piezothermoelastic equations for the thin
S3 = Q -31-a.b shell continuum and the boundary conditions can be reduced to

= C, *T conventional elastic shell equations by neglecting all electric and

Q m, ._' n thermal coupling terms (Soedel, 1981). Again. transverse shear
-7" deformation and rotatory inertia effects were not considered

m
132-a.b PIEZOTHERMOELECTRICITY OF SIMPLIFIED

GEOMETRIES

Again. there is no electrically induced shear components because
the in-plane twisting effect is neglected. Note that usually only The piezotnermoelastic theory derived above is for a
either force boundary conditions or dispJacement boundary generic piezoelectric shell continuum exposed to mechanical.
conditions are selected for a given physical boundary condition. thermal, and electric fields. The generic shell was defined in a
For a totally fixed ede at ar = al 1,ie.. no motion allowed), curvilinear tri--orthogonal coordinate system defined by a, c2.
For abtotally fixednditi ate: l = 0i, = U. n3=o. motionand a3 axes. The in-plane two axes define the neutral surfacethe boundary conditions are: u1 = U. .it = . u• = '3. and u2 = 0.

Sxperiencing only membrane effects. Each of the in-plane axis
For a totally free ede at a2 = 02 , i.e., no external forces and is defined by its radius of curvature, e.g., R, for a, and R- for
moments. the boundary conditions at 02 = '2 are: Na2 - Ne2  03. In addition, there are two Lame's parameters (A, and A2)

= 0..Mm 2 - Me = 0. 'S~3 = 0. and T2 1 = i In the case where defined by a fundamental form: (ds)2 = A,2 (do 1 2

0, M2 2- N12 -2 2the surface tractzon forces t. are defined, the boundary + A 2 (d a2 ) For a given geometry, R, and R2 can usually be
directly observed from the coordinate system and A, and A- can

membrane forces are be derived from the fundamental form. Substituting the four
parameters into the generic shell equation and simplifying them

N 1  t = lt1 da 3 , (33-a) accordingly, one can derive the ccrresponding piezothermoelastic
03 equations and boundary conditions for the geometry. In this

- (33-b) section, these procedures are used to derive the
2 t22d 3 , (piezothermoelastic equations for 1) a piezoelectric cylindrical

"a3 shell and 2) a piezoelectric beam.

N1 2 =a t 2da 3 , (33-c)

tNji=J t(3d-d)2 3
Example-h: Piezoetectric Cylindrical Shell

where N is the total force on the ith face in the jth direction It is assumed that the cylindrical shell is defined in a

due to the surface tractions. The induced boundary bending cylindrical coordinate system in which x axis (at) is aligned with

moments M i are the height and its radius of curvature R, = ®. The second axis 0
(0c) defines the circumferential direction which has a radius of
curvature R2 = A. Note that the x and 9 axes constitute the

= ti 1 3das (34-a) neutral surface. The third axis a3 is normal to the neutral
-a3 surface. Figure 2 illustrates the piezoelectric cylinder and its

NI = t 22,. 3do . .34-b) coordinate system. Piezothermoelastic effects of the cylindrical
shell will be discussed.

NI 2 = f t; 2o 3do Q, (34--c)

2= 1 t2,o 3doi (34-d)
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Note that the superscripts m. e. and t are for the mechanrual.
electric, and thermal effects respectively Substituting the fcrce

and moment terms into the Q•'3 and Q!3 equations. one can
derive

- el- h 3 ,a1ll -D( I-at• e,. :-h 31
QM D - j~ ~u -. jg e

a
2
uq F D e31

2 h 3  3uI 44
"" TT '7X

I D e3j-' h3 1 i31ll 'D( I-L. O ,.

D el 2 h 3  u'ai D e,,. hh3 J.):4

Fig.2 A pieoelectnc cylindrical shell. Thus. the piezothermoelastic equations in three principal
Jirections for the piezoelectric cylindrical shell are derived

The fundamental form of the cylinder is
(ds) 2 = (l)4(dx)2 + 32(d0)2. 37) ±(NM:N¶-N~z)•l • a = Ph• U6

Thus, At = - 2 =3, R, =m. R2 =R. a, = x. a2 = + o[N1-N-,--NY + Qj3 = phR -- , (471
Substituting these parameters into the member/bending strain Ox +

expressions in Section-2, one can derive the membrane Sý, and 219 21 + I[ N-N 5r--N J2 ] = ph11-2
U (481

bending strains kij for the cylindrical shell. Thus. the total Ox
strains are

It is observed that the thermal effects only contribute to the
-= 9 3 a2u, membrane forces. Removing the electric and thermal related

Sit= - o•*- 7N-., (38-ai terms, one can simplify the system equations to those
0 ] 0At1 ),),] corresponding to an elastic cylindrical shell.

2 = U 4 - Using the charge boundary condition, one can define the
2 • 011 alu,] (3 electric field strength E3 at the location a, above/below the- (38-r) neutral surface as a function of the mechanical strains.

Substituting the strains into the stress equations and "temperature effect. and charge effect.
consequently into the force/moment equations. one can derive
the force/moment for the cylindrical shell. E 3 au 9 + 1131 + C13 - U3

N 1 K U3]1} (39-a) + C3 32U311 -P3Ato~~. Q39
+L 7--I Wj ~ J E33 f33

r I rAt9 ou ]
N'!= K -- i-T + U3j + .a-1 (39-b) The electric field strength is contributed by the direct

piezoelectric effect (the first term), the pyroelectric effect (the
'L --- j(39) as defined in the constitutive equation. Note that the resulting

2 -0114 )2 voltage is V3 = f 0 Eda3 in an open--ircuit condition. The
NI'l = D I-(-. A •" - (40-a) bending components, with aQ3 terms. vanish after the

- integration. It is also observed that the output signal has a

N = D 'ju]- r7 ; , 10-bi temperature related term induced by the pyroelectric effect in
YI =I DT'j ' - sensor applications. Note that it is assumed that the external

= D(l-u) -2 a2u11 charge is zero in sensor applications (Tzou & Zhong, 1991a).

= 2Example-2: Piezoelectnc Beam
=-e•- [ +h -T- + DT- U3 A beam is a special case of an open ring with zero

eý33 L curvature, I = m In this case. the a, axis is aligned with the
-e- -h [p3Atp " Q, (41-a) :ongitudinal direction of the cantilever beam, i.e.. a, = x. The

t ,3 3 second axis is in the width direction, oa = y. Figure 3 shows the
N%,= .N" 41-b) piezoelectric beam. It is assumed that the beam only

experiences transverse oscillations, 03 = z. Governing equation
h 3 ()21,1 I and piezothermoeiastic behaviors of the beam are discussed.
.XI•.:~ ~ = 4• 2-a!

;42-hI The fundamental form of the beam is

N!1 = \i-t 1, ( 3- (ds) 2 = I( dx i 1 (1)2(dy)I . (50)

= .\..t 1 , 43-bI
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- dhb = ah

where 1 b Note that the elasticitv part has one -,rewhereI T=

term contributed by the piezoelectricity The piezoeiectr:,::ty
:ontributed elasticity s very small. about I,• fc.r p;ezoeie,-t.:c

k• L poivvinvlidene fluoride polymer 1Tzou I Zhong ,: r a.
r However. the temperature has no contribution to the transverse

oscuilation because the thermal forces are primarily n e
neutral surface. neutral axis in this casp Thi, p,'roeilctric -few:
will contribute to the longitudinal oscillation.

The electric field strength at the location a, above,' !.W
the neutral axis is defined by the external charge. temperature
induced pyrotec:ric effect. and bending strain

- ~E3 . . . . p3Atp +, q3-• ul- : a

Fig.3 A piezoelectnc cantilever heam. 3

where dx and dy are infinitesimal distances in the x and v
directions respectively.- Thus. A, = 1. A.: = 1. R , = R. r However. the resultant open-,circuit voltage V1 is. in fact. -ni%
Since only the bending oscillation is considered. the membrane r h/2 -
stra ins are zeros. i~e.. S = 0. S = ,). and S 2 = , The contributed by the pyroelectric effect Q3 = 0 and I' h/2

strains arel zeros i=. S10..]nadS' h

bending strain at the a3 location is defined by k11  - (-"a"uld-- a= I d13'

and k22 = 0. k12 = 0. The total strains at a3 location are
defined as

SUMMARY AND CONCLUSIONS
A linear piezothermoelastic theory of piezoelectric shell

continua was proposed and piezothermoelastic phenomena were
Again, the beam experiences only transverse oscillation The evaluated. It was assumed that the electric, thermal. and elastic
membrane (longitudinal) force components are all zeros. i.e.. NT1  fields are instantaneously balanced and a quasi-static c n(Ltuon

is used in the piezothermoelastic constitutive equaucný A
= 0, N~2 = 0. N•2 = 0. The tesultant moments are generic theory for a piezoelectric thin shell contnu=u ,as

derived using Hamulton's pnnciple and Kirchhouff .,ve
= D(kIi+Ak22) = - D i52-a) assumptions The governing equations show close couping

effects among electric, thermal, and elastic fields. Both
.M• = D(k 22+Ak11) = - D a211,. (52-b) mechanical and electric effects contnbute to the resultant

Dx 1-forces/moments for the shell continuum. However, it was
=----1---- k2  0 (2--c) observed that the thermal effect only contributes to the

2 membrane force resultants, not the bending resultants due to a
uniform temperature assumption Thermal induced bending

Note that the moment MT2 is primarily introduced by Poisson's could appear if there is a non-uniform temperature distribution.
effect. The electric force and moment resultants due to the Note that the electric force/moment resultants in the
external charge and temperature are piezothermoelastic equations can be used to control the shell

continuum.

"• = -ch e.i 0 h e• o A . {53-a The derived piezothermoelastic equations are generic." 3 e"P3 ' which can be simplified to a variety of piezoelectnc continua if
N3= - h f33 Q3 - he p t (53-b) two radii of curvatures and two Lame's parameters are defined"" 33 3

This simplification was demonstrated in three examples: I a
h3 e 3 1

2  
a2u 3  (54-a) cylindncal shell and 2) a beam. Detailed piezothermoelastic

• T7 33 phenomena of each geometry were discussed along with the
h3 e3i 2  82 U, 14-b i derived governing equations. The same procedure can be

f33 6 applied to a variety of other piezoelectric continua and so as the
piezothermoelastrictv evaluated. Note that the theory was
derived based on linear assumptions and the material

V= h A.1tp, 355-a) nonlinearity was not considered. However, these material
N.2 = h A.%tp. (53-b) constants (e.g . piezoelectrc constants, elastic constants. etc i

could vary when temperature variation is significant. Thus.
Substituting the system parameters and force/moment extending the present theory to encompass the material
resultants into the original shell equation. one can derive the nonlinearity would further enhance the theoretical development
transverse piezothermoelastic equation and understand more about the complicated behaviors of

piezoelectric sensors/actuators operating in non-ideal
h3 el." '•hiii, environments.

1 37 J O33

For a beam with a rectangular cross-section i width b and
thickness h), the transverse equation .t motion is
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